Page no.

Contents

List of Tables	4
List of figures	5
CHAPTER:1	7
INTRODUCTION	8
1.1 PROBLEM STATEMENT	9
1.1.1 MISSION REQUIREMENTS	9
1.2. LITERATURE SURVEY	11
1)AeroVironment Global Observer	
2) AirStrato	12
3) BOEING Phantom Eye	13
4) General Unmanned Aircraft study	14
1.3 INITIAL LAYOUT	15
1.4 RATIONALE	16
CHAPTER:2	18
Initial sizing:	19
2.1 Mission Profile:	19
2.2. Weight estimation:	21
2.3. Battery and Solar cell calculations:	22
2.4. Solar cell and some other components weight:	22
CHAPTER:3	24
AIRFOIL AND WING PLANFORM SELECTION:	25
3.1Airfoil Selection:	25
3.2 Estimation of Wing Sweep, Taper Ratio, Twist Angle, V	
Dihedral angle:	
CHAPTER 4	_
DESIGN PARAMETERS:	29
Maximum Load/Turn.:	29
Endurance:	29
Cruise:	29

Rate of Climb:	29
Take-off Distance:	29
CHAPTER 5	34
DETAILED SIZING:	35
5.1. Solar Cell, Battery and Fuel Cell calculations:	36
5.2. Final added weight estimation	40
CHAPTER 6	42
GEOMETRY SIZING AND CONFIGURATION	43
6.1. Fuselage Dimensions:	43
6.2. Motor specifications:	43
6.3. Wing Sizing and Planform Shape:	
6.4 Horizontal Tail:	
6.5Vertical tail:	46
CHAPTER 7	47
REFINED GEOMETRICAL SIZING	48
7.1. Fuselage:	48
7.2 Electric Motor Dimension and Sizing:	49
7.3 Electric Motor Placement:	
7.4 Propeller Sizing:	51
7.5 Undercarriage Design:	53
CHAPTER 8	54
AERODYNAMICS	55
8.1. C _L VS Alpha Curve:	55
8.2. C _L VS C _D Curve:	55
8.3. L/D vs CL curve:	56
8.4. Total Parasite Drag:	57
8.5. Lift Distribution on wing:	60
8.6. Total Drag distribution on Wing:	61
8.7. Aerodynamic Analysis:	62
CHAPTER 9	67
ELECTRICAL SYSTEMS AND RESERVE ENERGY CALCULATIONS	68
9.1. Electric Power Distribution Flow chart	68
9.2. Alta Devices Solar Cells:	68
9 3 Avionics:	70

9.4. MPPT (Maximum Power Point Tracker):	73
9.5. Battery	74
9.6. Controller cum Inverter:	74
9.7. Electric Motor:	75
9.8. Fuel Cell System:	75
9.9. Reserve Energy	77
CHAPTER 10	78
WEIGHTS LOADS AND CG ESTIMATION:	79
10.1 Decision for location of Fuel Cells and Hydrogen tank:	
10.2 Fuselage Parameters from Sizing:	79
10.3 Estimation of weight of major components	79
10.4 Initial Estimation of Centre of Gravity:	81
CHAPTER 11	82
AIRCRAFT PERFORMANCE	83
11.1. Take-off and landing performance:	83
11.2 Range and Endurance:	85
11.3. Turn performance:	86
11.4. Glide path angle:	87
11.5 Climb Performance:	87
CHAPTER 12	90
AIRCRAFT STABILITY AND CONTROL:	91
12.1. Static stability:	91
12.2 Control Surface Sizing:	94
CHAPTER 13	96
GEOMETRIC LAYOUT	97
13.1. Line Diagrams From openVSP	97
13.2. Spline diagrams from openVSP	99
13.3. Design Summary and other Aspects:	103
13.4. Conclusion:	104
Reference	105
Appendix 1:	107
Appendix 2:	109
Appendix 3:	112

<u>List of Tables</u>

Table 1 distance between stations	10
table 2 general characteristics of global observer	
Table 3 general characteristics of airstrato	12
Table 4 general characteristics of phantom eye	14
Table 5 General unmanned aircrafts	14
Table 6 Airfoil characteristics	
Table 7 Power required by each segment	
Table 8 Energy required in each segment	35
Table 9 MPPT from MG Master LV Specifications	
Table 10 . Battery Specifications	
Table 11 Fuel cell system Specifications	39
Table 12 EMRAX synchronous permanent magnet motor specifications	40
Table 13 Siemens motor controller/inverter specifications	
Table 14 CDo equations	
Table 15 Parameters for Cd0 calculations	
Table 16. Cdo values at different altitudes	58
Table 17 Cdo Contribution of Main Components at 15000m altitude	59
Table 18 Cdo Contribution of Main Components at sea level	
table 19 mechanical property of solar panel	
Table 20 Electrical properties of solar panel	70
Table 21 Mechanical and electrical properties for the avionics subsystems	
Table 22 Reserve energy calculation	
Table 23 Fuselage Parameters	79
Table 24 Exposed planform area of various components aircraft	
Table 25 Weight of major Component by group approximation	80
Table 26 Individual Cg Location of Components Along Longitudinal Axis	
Table 27 Take of distance for various co-efficient of friction	83
Table 28 Landing distance for various co-efficient of friction	85
Table 29 Max rate of climb at different altitude	
Table 30 Design summary	103
Table 31 Requirements and Design Results	104

<u>List of figures</u>

Figure 1 Wire frame diagram of design concept from openVSP	8
Figure 2. Map of Stations and Mission Zone	10
Figure 3Mounting Orientation and Dimensions of LIDAR Payload	11
Figure 4 Global observer	
Figure 5 Airstrato	
Figure 6 Boeing Phantom eye	14
Figure 7 ISO view of the aircraft configuration from openVSP	15
Figure 8 Front view of the aircraft configuration from openVSP	15
Figure 9 Left side view of the aircraft configuration from openVSP	15
Figure 10 Mission profile	
Figure 11 FX63-137 airfoil geometry	
Figure 12 Airfoil Geometry of NACA 0010-34	27
Figure 13 Constraint analysis graph using MATLAB	30
Figure 14 Power required curve for climb	32
Figure 15 Power required curve for cruise	
Figure 16 Wing planform	44
Figure 17 Horizontal tail planform	46
Figure 18Vertical tail planform	46
Figure 19 Fuselage dimension estimation	49
Figure 20 Mechanical properties	
Figure 21 Electrical properties	50
Figure 22 EMRAX 188 Electric Motor	50
Figure 23 EMRAX 188 Electric Motor	
Figure 24 Electric motor placement	
Figure 25 Data for Propeller Diameter Calculation	52
Figure 26 Three bladed propeller model	
Figure 27 Propeller parameters representation	
Figure 28 Landing gear model	
Figure 29 Schematic diagram of Ackermann steering mechanism	
Figure 30 CL VS Alpha Curve	
Figure 31 CL VS CD Curve	
Figure 32 L/D vs Cl curve from openVSP	
Figure 33 Pie chart of parasite drag distribution @ 15Km altitude	
Figure 34 Pie chart of parasite drag distribution @sea level	
Figure 35 Lift distribution over wing from xflr5 software	
Figure 36 Total drag	
Figure 37 Total drag distribution	
Figure 38 Cp Distribution over wing	
Figure 39 Vorticity over wing	
Figure 40 Lift distribution over empennage from open VSP	
Figure 41 Cp distribution over empennage	

Figure 42 Vorticity over empennage	64
Figure 43 Cp distribution over complete UAV	65
Figure 44 Vorticity over complete UAV	65
Figure 45 Lift distribution over complete UAV	65
Figure 46 Flow analysis of entire UAV with rotors	66
Figure 47 Electric Power Distribution Flow chart	68
Figure 48 Unshingled solar cell	69
Figure 49 Shingled Solar Panel	69
Figure 50 Interface Control Processor	·71
Figure 51 Payload Management Computer	·71
Figure 52 Payload Interface Unit	·71
Figure 53 Engine Control Computer	72
Figure 54 Electrical Power Management Units	72
Figure 55 Inertial Navigation System	73
Figure 56 mppt	·74
Figure 57 1 12V 600Ahr Battery pack	·74
Figure 58 Siemens Controller/Inverter	·75
Figure 59 EMRAX 188 Electric Motor	
Figure 60 Fuel Cell	·76
Figure 61 H2 gas tanks	76
Figure 62 Load Distribution in fuselage	·79
Figure 63 Co-efficient of friction vs take-off distance	84
Figure 64 Co-efficient of friction vs Landing distance	85
Figure 65 power required vs velocity at 15Km altitude	86
Figure 66 ROC at sea level	·87
Figure 67 ROC at 15Km altitude	88
Figure 68 ROC at service ceiling	88
Figure 69 Cm Vs alpha for fuselage alone	92
Figure 70 Cm vs Cl for complete aircraft	93
Figure 71 Cm vs Cl for complete aircraft from openVSP	93
Figure 72 line diagram of front view from openVSP	97
Figure 73 line diagram of side view from openVSP	98
Figure 74 line diagram of top view from openVSP	98
Figure 75 spline diagram of front view from openVSP	99
Figure 76 spline diagram of side view from openVSP	100
Figure 77 spline diagram of left iso view from openVSP	100
Figure 78 spline diagram of top view from openVSP	101
Figure 79 spline diagram of bottom view from openVSP	102
Figure 80 spline diagram of bottom view with lidar placement from openVSP	103